The nuclei that make up cosmic rays are able to travel from their distant sources to the Earth because of the low density of matter in space. Nuclei interact strongly with other matter, so when the cosmic rays approach Earth they begin to collide with the nuclei of atmospheric gases. These collisions, in a process known as a shower, result in the production of many pions and kaons, unstable mesons which quickly decay into muons. Because muons do not interact strongly with the atmosphere and because of the relativistic effect of time dilation many of these muons are able to reach the surface of the Earth. Muons are ionizing radiation, and may easily be detected by many types of particle detectors such as bubble chambers or scintillation detectors. If several muons are observed by separated detectors at the same instant it is clear that they must have been produced in the same shower event.
Cosmic rays impacting other (non-Earth) bodies in the solar system which are made of elements heavier than hydrogen and helium, can be detected indirectly by observing high energy gamma ray emmisions from these bodies using a gamma-ray telescope (see image at right). When such gammas are of energy too high to result from radioactive decay processes (> about 10 MeV) they must be secondary to cosmic ray bombardment.
Detection by particle track-etch technique
Cosmic rays can also be detected directly when they pass through particle detectors flown aboard satellites or in high altitude balloons. In a pioneering technique developed by Robert Fleischer, P. Buford Price, and Robert M. Walker,[5] sheets of clear plastic such as 1/4 mil Lexan polycarbonate can be stacked together and exposed directly to cosmic rays in space or high altitude. When returned to the laboratory, the plastic sheets are "etched" [literally, slowly dissolved] in warm caustic sodium hydroxide solution, which removes the surface material at a slow, known rate. Wherever a bare cosmic ray nucleus passes through the detector, the nuclear charge causes chemical bond breaking in the plastic. The slower the particle, the more extensive is the bond-breaking along the path; and the higher the charge [the higher the Z], the more extensive is the bond-breaking along the path. The caustic sodium hydroxide dissolves at a faster rate along the path of the damage, but thereafter dissolves at the slower base-rate along the surface of the minute hole that was drilled. The net result is a conical shaped pit in the plastic; typically with two pits per sheet [one originating from each side of the plastic]. The etch pits can be measured under a high power microscope [typically 1600X oil-immersion], and the etch rate plotted as a function of the depth in the stack of plastic. At the top of the stack, the ionization damage is less due to the higher speed. As the speed decreases due to deceleration in the stack, the ionization damage increases along the path. This generates a unique curve for each atomic nucleus of Z from 1 to 92, allowing identification of both the charge and energy [speed] of the particle that traverses the stack. This technique has been used with great success for detecting not only cosmic rays, but fission product nuclei for neutron detectors.
Interaction with the Earth's atmosphere
When cosmic ray particles enter the Earth's atmosphere they collide with molecules, mainly oxygen and nitrogen, to produce a cascade of lighter particles, a so-called air shower. The general idea is shown in the figure which shows a cosmic ray shower produced by a high energy proton of cosmic ray origin striking an atmospheric molecule.
This image is a simplified picture of an air shower: in reality, the number of particles created in an air shower event can reach in the billions, depending on the energy and chemical environment (i.e. atmospheric) of the primary particle. All of the produced particles stay within about one degree of the primary particle's path. Typical particles produced in such collisions are charged mesons (e.g. positive and negative pions and kaons). Cosmic rays are also responsible for the continuous production of a number of unstable isotopes in the Earth’s atmosphere, such as carbon-14, via the reaction:
Cosmic rays kept the level of carbon-14 in the atmosphere roughly constant (70 tons) for at least the past 100,000 years, until the beginning of above-ground nuclear weapons testing in the early 1950s. This is an important fact used in radiocarbon dating which is used in archaeology.
No comments:
Post a Comment