Friday, April 23, 2010

History

After the discovery of radioactivity by Henri Becquerel in 1896, it was generally believed that atmospheric electricity (ionization of the air) was caused only by radiation from radioactive elements in the ground or the radioactive gases (isotopes of radon) they produce. Measurements of ionization rates at increasing heights above the ground during the decade from 1900 to 1910 showed a decrease that could be explained as due to absorption of the ionizing radiation by the intervening air.

In 1910 Theodor Wulf developed an electrometer (a device to measure the rate of ion production inside a hermetically sealed container) and used it to show higher levels of radiation at the top of the Eiffel Tower than at its base, but his paper published in Physikalische Zeitschrift was not widely accepted. In 1912 Domenico Pacini observed simultaneous variations of the rate of ionization over a lake, and over the sea. Pacini concluded that a certain part of the ionization must be due to sources other than the radioactivity of the Earth or the air.[7] Then, in 1912, Victor Hess built three enhanced-accuracy Wulf electrometers[8] and carried them aloft to an altitude of 5300 meters in a free balloon flight. He found the ionization rate increased approximately fourfold over the rate at ground level.[8] Hess also ruled out the sun as the radiation's source by making a balloon ascent during a near-total eclipse. With the moon blocking much of the sun's visible radiation, Hess still measured rising radiation at rising altitudes.[8] He concluded "The results of my observation are best explained by the assumption that a radiation of very great penetrating power enters our atmosphere from above." In 1913–1914, Werner Kolhörster confirmed Victor Hess' earlier results by measuring the increased ionization rate at an altitude of 9 km. Hess received the Nobel Prize in Physics in 1936 for his discovery.[9][10]

The term "cosmic rays" was coined by Robert Millikan who proved they were extraterrestrial in origin, and not produced by atmospheric electricity as Hess had thought. Millikan believed that cosmic rays were high-energy photons with some secondary electrons produced by Compton scattering of gamma rays. Compton himself held the (correct) belief that cosmic rays were primarily charged particles. During the decade from 1927 to 1937, a wide variety of experimental investigations demonstrated that the primary cosmic rays are mostly positively charged particles, and the secondary radiation observed at ground level is composed primarily of a "soft component" of electrons and photons and a "hard component" of penetrating particles, muons. The muon was initially believed to be the unstable particle predicted by Hideki Yukawa in 1935 in his theory of the nuclear force. Experiments proved that the muon decays with a mean life of 2.2 microseconds into an electron and two neutrinos, but that it does not interact strongly with nuclei, so it could not be the Yukawa particle. The mystery was solved by the discovery in 1947 of the pion, which is produced directly in high-energy nuclear interactions. It decays into a muon and one neutrino with a mean life of 0.0026 microseconds. The pion→muon→electron decay sequence was observed directly in a microscopic examination of particle tracks in a special kind of photographic plate called a nuclear emulsion that had been exposed to cosmic rays at a high-altitude mountain station. In 1948, observations with nuclear emulsions carried by balloons to near the top of the atmosphere by Gottlieb and Van Allen showed that the primary cosmic particles are mostly protons with some helium nuclei (alpha particles) and a small fraction heavier nuclei.

In 1934 Bruno Rossi reported an observation of near-simultaneous discharges of two Geiger counters widely separated in a horizontal plane during a test of equipment he was using in a measurement of the so-called east-west effect. In his report on the experiment, Rossi wrote "...it seems that once in a while the recording equipment is struck by very extensive showers of particles, which causes coincidences between the counters, even placed at large distances from one another. Unfortunately, he did not have the time to study this phenomenon more closely." In 1937 Pierre Auger, unaware of Rossi's earlier report, detected the same phenomenon and investigated it in some detail. He concluded that extensive particle showers are generated by high-energy primary cosmic-ray particles that interact with air nuclei high in the atmosphere, initiating a cascade of secondary interactions that ultimately yield a shower of electrons, photons, and muons that reach ground level.

Attempts were made to measure the primary cosmic ray component at very high altitude. Soviet physicist Sergey Vernov was the first to use radiosondes to perform cosmic ray readings at high altitude. On April 1, 1935, he took measurements up to 13.6 kilometers using a pair of geiger counters in an anti-coincidence circuit to avoid counting secondary ray showers.[11][12]

Homi J. Bhabha derived an expression for the probability of scattering positrons by electrons, a process now known as Bhabha scattering. His classic paper, jointly with Walter Heitler, published in 1937 described how primary cosmic rays from space interact with the upper atmosphere to produce particles observed at the ground level. Bhabha and Heitler explained the cosmic ray shower formation by the cascade production of gamma rays and positive and negative electron pairs. In 1938 Bhabha concluded that observations of the properties of such particles would lead to the straightforward experimental verification of Albert Einstein's theory of relativity.

Measurements of the energy and arrival directions of the ultra-high-energy primary cosmic rays by the techniques of "density sampling" and "fast timing" of extensive air showers were first carried out in 1954 by members of the Rossi Cosmic Ray Group at the Massachusetts Institute of Technology. The experiment employed eleven scintillation detectors arranged within a circle 460 meters in diameter on the grounds of the Agassiz Station of the Harvard College Observatory. From that work, and from many other experiments carried out all over the world, the energy spectrum of the primary cosmic rays is now known to extend beyond 1020 eV (past the GZK cutoff, beyond which very few cosmic rays should be observed). A huge air shower experiment called the Auger Project is currently operated at a site on the pampas of Argentina by an international consortium of physicists. Their aim is to explore the properties and arrival directions of the very highest energy primary cosmic rays. The results are expected to have important implications for particle physics and cosmology. In November, 2007 preliminary results were announced showing direction of origination of the 27 highest energy events were strongly correlated with the locations of active galactic nuclei [AGN], where bare protons are believed accelerated by strong magnetic fields associated with the large black holes at the AGN centers to energies of 1020 eV and higher.

Three varieties of neutrino are produced when the unstable particles produced in cosmic ray showers decay. Since neutrinos interact only weakly with matter most of them simply pass through the Earth and exit the other side. They very occasionally interact, however, and these atmospheric neutrinos have been detected by several deep underground experiments. The Super-Kamiokande in Japan provided the first convincing evidence for neutrino oscillation in which one flavour of neutrino changes into another. The evidence was found in a difference in the ratio of electron neutrinos to muon neutrinos depending on the distance they have traveled through the air and earth.

No comments:

Post a Comment